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APPENDIX A: MASTER EQUATION AND CUMULANTS WITH DELAYS

1. Master equation in a cell with coupling to the environment

Assume that there are n identical cells, which are coupled with a common extracellular en-

vironment. Consider a system containing n0 chemical reactions with m molecular species or

molecules in one cell. Let X = (X1, ..., Xm) be the state of the molecules at the time t, i.e., Xi

is the number of the ith molecule at t in the cell. Let Y = (Y1, ..., Ym) be environment variables

coupled to the cell, which are assumed to be relatively steady in contrast to X and freely diffusible

among cells, e.g., Y is the total numbers of the extracellular X for a multi-cell system.

Define p(X; t) to be the probability function for the state X(t) at t. Then, the dynamics

of the system can generally be described by the master equation (Van Kampen, 1992) with an

initial state X(0) at t = 0:

∂p(X; t)
∂t

=
n0∑

k=1

[wk(X − θk)p(X − θk; t)− wk(X)p(X; t)] , (A1)

where θk = (θk,1, θk,2, · · · , θk,m) is an integer-valued vector for the change of the state, i.e., θkj

is a change in the number of the jth molecule by the kth reaction. wk(X) is a transition rate

from state X to X + θk by the kth chemical reaction. In addition to the intracellular chemical

reactions, the master equation (A1) includes linear diffusion reactions or the coupling reactions

with the environment, which are approximately expressed by the following chemical reactions

with feedback delays τi

Xi
dii

diiv/V
Yi (A2)

where dii is the diffusion rate of the ith molecule between the cell and the environment, and

Yi is the total number of the ith molecule in the environment. Moreover, the extracellular
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noises associated with the diffusion process of X are also incorporated in eqn.(A1), which can be

equivalently described in the form of the following chemical reaction

Xi

σ2
iiv/(2Xi)


σ2

iiv/(2Yi)
Yi, (A3)

where σ2
ii is the extracellular noise intensity or the variance, which affects the cell dynamics

through cellular signals Xi and Yi. Notice that both p and wk are functions of the environment

variables Y , which are dropped in (A1) for the sake of simplicity. dii = 0 if the ith molecule is

not a coupling variable between the cell and the environment.

Assume that the system is well mixed due to the free diffusion and transportation processes of

signal molecules between the environment and each cell, which means that the signal molecules

are randomly distributed in a uniform sense throughout the environment. When there are a

sufficiently large number of cells, i.e., n →∞, the concentration of Y approaches the average or

the mean field concentration of X, i.e., Y/V = N(t − τ) ≡ 〈X(t − τ)/v〉 which represents the

time-delayed feedback effects. v = v̄A and V = V̄ where v̄ and V̄ are the individual cell volume

and the total environment volume respectively, and A is the Avogadro number. N is the mean

value of the concentration X/v.

Next we derive the master equation for the synthetic gene network shown in Fig.1. Let AI2

and LuxR2 indicate AI and LuxR protein dimers, and AL and ALD represent AI2−LuxR2 and

AI2−LuxR2−DNA complexes, respectively. For convenience, we define the following molecules:

X1, LuxI; X2, LuxR; X3, AL; X4, ALD; X5, AI2; X6, LuxR2; X7, mRNALuxI ; X8, mRNALuxR;

X9, AI; and Y , AI2 in the environment. Define nD as the total number of DNA, and nDNA as

the free DNA number. Then, by the conservation condition, we have nDNA + X4 = nD. From

eqns.(A1)-(A3), the transition rates and the states corresponding to reactions (6)-(16) are listed

as Table 1, where the last two rows represent the diffusion process and the extracellular noise

effect between each cell and the environment for AI according to eqns.(15)-(16). In Table 1, the

volume factors v and V are multiplied to some wk to convert the concentration to the number of

the molecule because the reaction rates k1-k4 are second-order reactions and are defined not by

the numbers but by the concentrations in the given data of this paper.
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TABLE 1: Transition rates and states
X1 X2 X3 X4 X5 X6 X7 X8 X9

k θk,1 θk,2 θk,3 θk,4 θk,5 θk,6 θk,7 θk,8 θk,9 wk

1 0 0 0 0 0 0 0 0 1 kaX1(t)

2 0 0 0 0 1 0 0 0 -2 k1X9(t)(X9(t)− 1)/v

3 0 0 0 0 -1 0 0 0 2 k−1X5(t)

4 0 -2 0 0 0 1 0 0 0 k2X2(t)(X2(t)− 1)/v

5 0 2 0 0 0 -1 0 0 0 k−2X6(t)

6 0 0 1 0 -1 -1 0 0 0 k3X5(t)X6(t)/v

7 0 0 -1 0 1 1 0 0 0 k−3X3(t)

8 0 0 -1 1 0 0 0 0 0 k4X3(t)(nD −X4(t))/v

9 0 0 1 -1 0 0 0 0 0 k−4X4(t)

10 0 0 0 0 0 0 1 1 0 km(nD −X4(t))

11 0 0 0 0 0 0 1 1 0 αkmX4(t)

12 1 0 0 0 0 0 0 0 0 kpiX7(t)

13 0 1 0 0 0 0 0 0 0 kprX8(t)

14 0 0 0 0 0 0 -1 0 0 emiX7(t)

15 0 0 0 0 0 0 0 -1 0 emrX8(t)

16 -1 0 0 0 0 0 0 0 0 eiX1(t)

17 0 -1 0 0 0 0 0 0 0 erX2(t)

18 0 0 0 0 0 0 0 0 -1 eaX9(t)

19∗ 0 0 0 0 0 0 0 0 1 dY9(t)v/V + (σ)2v/2

20 0 0 0 0 0 0 0 0 -1 dX9(t) + (σ)2v/2
∗ If n →∞, then Y9(t) = 〈X9(t− τ)〉V

v .

• The transition rate wk(X(t)) = 0 if wk(X(t)) < 0 or if wk(X(t)) has a variable Xi(t) satisfying

Xi(t) + θk,i < 0, due to nonnegative values of wk and X(t).

• wk(X(t)) = 0 if wk(X(t)) has a term nD −X4(t) satisfying either nD −X4(t) < 0 or nD − (X4(t) +

θk,4) < 0, due to the conservation condition of the DNA number.

2. Langevin equations

By Taylor expansion of wk(X(t) − θk)p(X(t) − θk) to order two in eqn.(A1), we obtain the

following Fokker-Plank equation (Van Kampen, 1992; Risken, 1989):

∂p(X(t); t)
∂t

=
n0∑

k=1


−

m∑

i=1

θk, i
∂

∂Xi
+

m∑

i,j=1

θk,iθk,j

2
∂2

∂Xi∂Xj


wk(X(t))p(X(t); t). (A4)



23

Let the first nI reactions be the intracellular chemical reactions. Then the remaining nE =

n0 − nI reactions are the reactions interacting with the environment. Define

K̄i(X(t)) =
nI∑

k=1

θk,iwk(X(t))

K̄ij(X(t)) =
nI∑

k=1

θk,iθk,jwk(X(t))

for all i and j. Let the concentrations of X(t) and Y (t) be x(t) and y(t), respectively, i.e.,

x(t) = X(t)/v and y(t) = Y (t)/V . By using the concentrations,

fi(x(t)) ≡ K̄i(vx(t))/v; Kij(x(t)) ≡ K̄ij(vx(t))/v, (A5)

then from eqns.(A1)-(A3), the Langevin equations corresponding to eqn.(A4) are given as follows

(Van Kampen, 1992; Risken, 1989):

dxi(t)
dt

= Fi + ξi(t) ≡ fi(x(t)) + dii(yi(t)− xi(t)) + ξi(t), (A6)

where ξi(t) are Gaussian white noises that have zero means 〈ξi(t)〉 = 0 and covariances

〈ξi(t)ξj(t′)〉 = Fij ≡ (Kij(x(t)) + dij(yi(t) + xj(t)) + σ2
ij)δ(t − t′). Notice that dij = σij = 0

for i 6= j, dii = 0 if variable xi(t) is not a coupling variable with the environment. Moreover,

σjj = σ, if j = 4, 5 or 9, otherwise, σjj = 0.

Assuming n →∞, in the system of Fig.1, the Langevin equations can be derived from Table

1 according to (A6).

dx1(t)
dt = −eix1(t) + kpix7(t) + ξ1

dx2(t)
dt = −2k2x2(t)(x2(t)− 1

v ) + 2k−2x6(t) + kprx8(t)− erx2(t) + ξ2

dx3(t)
dt = k3x5(t)x6(t)− x3(t)(k−3 + k4(nD

v − x4(t))) + k−4x4(t) + ξ3

dx4(t)
dt = k4x3(t)(nD

v − x4(t))− k−4x4(t) + ξ4

dx5(t)
dt = k1x9(t)(x9(t)− 1

v )− k−1x5(t)− k3x5(t)x6(t) + k−3x3(t) + ξ5

dx6(t)
dt = k2x2(t)(x2(t)− 1

v )− k−2x6(t)− k3x5(t)x6(t) + k−3x3(t) + ξ6

dx7(t)
dt = km(nD

v − x4(t)) + αkmx4(t)− emix7(t) + ξ7

dx8(t)
dt = km(nD

v − x4(t)) + αkmx4(t)− emrx8(t) + ξ8

dx9(t)
dt = −2k1x9(t)(x9(t)− 1

v ) + 2k−1x5(t) + kax1(t)− eax9(t) + d(〈x9(t− τ)〉 − x9(t)) + ξ9,

(A7)

where

〈ξi(t)ξj(t′)〉 = Kijδ(t− t′) for i 6= 9 and j 6= 9 with Kij = Kji
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〈ξ9(t)ξ9(t′)〉 = (K99 + d(〈x9(t− τ)〉V
v

+ x9(t)) + (σV )2)δ(t− t′)

and

K11(t) = eix1(t) + kpix7

K22(t) = 4k2x2(t)(x2(t)− 1
v
) + 4k−2x6(t) + kprx8 + erx2(t)

K33(t) = k3x5(t)x6(t) + x3(t)(k−3 + k4(
nD

v
− x4(t))) + k−4x4(t)

K44(t) = k4x3(t)(
nD

v
− x4(t)) + k−4x4(t) + σ2

K55(t) = k1x9(t)(x9(t)− 1
v
) + k−1x5(t) + k3x5(t)x6(t) + k−3x3(t) + σ2

K66(t) = k2x2(t)(x2(t)− 1
v
) + k−2x6(t) + k3x5(t)x6(t) + k−3x3(t)

K77(t) = km(
nD

v
− x4(t)) + αkmx4(t) + emix7(t)

K88(t) = km(
nD

v
− x4(t)) + αkmx4(t) + emrx8(t)

K99(t) = 4k1x9(t)(x9(t)− 1
v
) + 4k−1x5(t)) + kax1(t) + d(〈x9(t− τ)〉 − x9(t)) + eax9(t) + σ2

K26(t) = −2k2x2(t)(x2(t)− 1
v
)− 2k−2x6(t)

K34(t) = −k4x3(t)(
nD

v
− x4(t))− k−4x4(t)

K35(t) = −k3x5(t)x6(t)− k−3x3(t)

K36(t) = −k3x5(t)x6(t)− k−3x3(t)

K56(t) = k3x5(t)x6(t) + k−3x3(t)

K59(t) = −2k1x9(t)(x9(t)− 1
v
)− 2k−1x5(t) ,

and other Kij = 0. Notice that if a term in fi and Kij is negative, then the corresponding term

is zero, due to the constraints of wk in the master equation.

In this paper, the intracellular noises ξi are directly derived from the master equation by

the second order approximation of θk,i, and they are additive and white with an identical and

independent distribution for each cell. Theoretically, when the individual jumps or the changes

|θk,i| of the number Xi(t) are small, such an approximation approaches an accurate result (Van

Kampen, 1992); i.e., the additive and white noises are an adequate representation of the fluctu-

ations in a cell. Otherwise, the Ω expansion technique or other approximation methods should

be adopted to approximate the master equation in a more accurate manner. In the numerical

examples, the jumps |θk,i| are all 1 or 2, which are small compared with Xi(t) but they may still

have introduced errors in the simulation.
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3. Cumulant equations

The first and second cumulants for any two random variables xi and xj are actually their

means and covariances, i.e., 〈xi〉, 〈xj〉, and 〈xixj〉 − 〈xi〉〈xj〉. Let g(x(t), s) =
m∏

i=1
xsi

i (t), then,

for each integer-valued vector s = (s1, s2, · · · , sm), the moment evolution equations of (A6) are

given as follows (Kawai et al., 2004; Wojtkiewicz et al., 1996):

d〈g(x(t), s)〉
dt

=

〈
m∑

i=1

Fi
∂g

∂xi

〉
+

1
2

m∑

i=1

m∑

j=1

〈
Fij

∂2g

∂xi∂xj

〉
, (A8)

which can be used straightforward to derive cumulant evolution equations.

For the Gaussian approximation, all odd central moments vanish, and any even central mo-

ment can be expressed as products of the second central moments. For instance, 〈xixjxkxl〉c =

〈xixj〉c〈xkxl〉c + 〈xixk〉c〈xjxl〉c + 〈xixl〉c〈xjxk〉c, and 〈xixixixjxjxk〉c = 6〈xixi〉c〈xixj〉c〈xjxk〉c +

6〈xixj〉2c〈xixk〉c + 3〈xixi〉c〈xixk〉c〈xjxj〉c, where all moments are central moments, i.e., 〈x〉c =

〈x− 〈x〉〉. Notice that cumulants are identical to central moments for the first, second and third

orders, and any differentiable function can be expanded around 〈x〉 by central moments, i.e., for

the Gaussian distributions, by letting all odd central moments zero,

〈f(x)〉 = f(〈x〉) +
1
2!

∂2f(〈x〉)
∂x2

〈xx〉c +
1
4!

∂4f(〈x〉)
∂x4

〈xxxx〉c + · · · . (A9)

Thus, we derive eqn.(4) by eqn.(A8), which can be further simplified by eqn.(A9) with the as-

sumption of the Gaussian distributions. Next we derive the cumulant evolution equations for the

synthetic gene network shown in Fig.1.

Define Ni to be the first cumulant or the mean value of xi in the cell, and Mij to be the second

cumulant or the covariance of xi and xj . Then, according to eqn.(4), we have evolution equations
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for the first and second cumulants or the means and the covariances:

dN1

dt
= −eiN1 + kpiN7

dN2

dt
= −2k2

(
N2

2 + M22

)
+ 2k−2N6 + kprN8 + (

2k2

v
− er)N2

dN3

dt
= k3 (N5N6 + M56)−N3(t)

(
k−3 +

k4nD

v
− k4N4

)
+ k4M34 + k−4N4

dN4

dt
= k4N3

(nD

v
−N4

)
− k−4N4 − k4M34

dN5

dt
= k1

(
N2

9 + M99

)− k−1N5 − k3 (N5N6 + M56) + k−3N3 − k1

v
N9

dN6

dt
= k2

(
N2

2 + M22

)− k−2N6 − k3 (N5N6 + M56) + k−3N3 − k2

v
N2

dN7

dt
= km(

nD

v
−N4) + αkmN4 − emiN7

dN8

dt
= km(

nD

v
−N4) + αkmN4 − emrN8

dN9

dt
= −2k1

(
N2

9 + M99

)
+ 2k−1N5 − eaN9 + kaN1 +

2k1

v
N9 + d(N9(t− τ)−N9(t))(A10)
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1
2

dM11

dt
=

1
2

(eiN1 + kpiN7)− eiM11

1
2

dM22

dt
= 2k2

(
N2

2 + M22

)
+ 2k−2N6 +

1
2
kprN8 + (

1
2
er − 2k2

v
)N2

− (4k2N2 + er)M22 + 2k−2M26 +
2k2

v
M22

1
2

dM33

dt
=

1
2

(
k3 (N5N6 + M56) + N3

(
k−3 +

k4nD

v
− k4N4

)
− k4M34 + k−4N4

)

+ k3N6M35 + k3N5M36 −
(
−k4N4 + k−3 +

k4nD

v

)
M3 + (k4N3 + k−4) M34

1
2

dM44

dt
=

1
2

(
k4N3

(nD

v
−N4

)
+ k−4N4 − k4M34

)
+ k4

(nD

v
−N4

)
M34 − (k−4 + k4N3) M44 +

1
2
σ2

1
2

dM55

dt
=

1
2

(
k1

(
N2

9 + M99

)
+ k−1N5 + k3 (N5N6 + M56) + k−3N3 − k1

v
N9

)

− (k−1 + k3N6) M55 + k−3M35 − k3N5M56 + 2k1N9M59 − dM55 − k1

v
M59 +

1
2
σ2

1
2

dM66

dt
=

1
2

(
k2

(
N2

2 + M22

)
+ k−2N6 + k3 (N5N6 + M56) + k−3N3 − k2

v
N2

)

− (k−2 + k3N5) M66 + 2k2N2M26 + k−3M36 − k3N6M56 − k2

v
M26

1
2

dM77

dt
=

1
2

(
km(

nD

v
−N4) + αkmN4 + emiN7

)
− emiM77

1
2

dM88

dt
=

1
2

(
km(

nD

v
−N4) + αkmN4 + emrN8

)
− emiM88

1
2

dM99

dt
=

1
2

(
4k1

(
N2

9 + M99

)
+ 4k−1N5 + eaN9 + kaN1 − 4k1

v
N9 + d(N5(t− τ)−N5)

)

− (ea + 4k1N9) M99 + kaM19 + 2k−1M59 +
2k1

v
M99 +

1
2
σ2

dM26

dt
= −2k2(N2

2 + M22)− 2k−2N6 +
2k2

v
N2

+ 2k2N2M22 + 2k−2M66 − (k−2 + er + 4k2N2 + k3N5) M26 − k2

v
M22 +

2k2

v
M26

dM34

dt
= −k4nD

v
N3 + k4(N3N4 + M34)− k−4N4

+ k4

(nD

v
−N4

)
M33 + (k4N3 + k−4) M4 −

(
−k4N4 + k4N3 + k−3 + k−4 +

k4nD

v

)
M34

dM35

dt
= −k3(N5N6 + M56)− k−3N3

+ k−3M33 + k3N6M55 −
(
k4(−N4 +

nD

v
) + k−1 + k−3 + k3N6

)
M35 + k3N5 (M56 −M36)

dM36

dt
= −k3(N5N6 + M56)− k−3N3

+ k−3M33 + k3N5M66 − k3N6M35 −
(
k−2 + k−3 + k4

nD

v
+ k3N5 − k4N4

)
M36 + k3N6M56

dM56

dt
= k3(N5N6 + M56) + k−3N3

− k3N6M55 − k3N5M66 + k−3 (M35 + M36)− (k−1 + k−2 + k3N6 + k3N5) M56

dM59

dt
= −2k1(N2

9 + M99)− 2k−1N5 +
2k1

v
N9

+ 2k−1M55 + 2k1N9M99 − (d + k−1 + ea + k3N6 + 4k1X9) M59 − k1

v
M99 +

2k1

v
M59. (A11)
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APPENDIX B: GILLESPIE ALGORITHM WITH TIME DELAYS AND MEAN FIELD

VARIABLES

Based on the Direct Gillespie method (Gillespie, 1976, 2001), we give a detailed algorithm for

the simulation of the master equation (A1), where Y (t) ≡ 〈X(t − τ)〉V/v with time delays. Let

the superscript j of the algorithm indicate the jth cell, and assume there is one time delay τ

although multiple delays can be incorporated in the algorithm in a similar manner.

1. Initialization: input the cell number n, the stop time tstop and the initial states Xj(0) =

(Xj
1 , ..., X

j
m) of the jth cell for j = 1, ..., n. Let 〈X(r)〉 =

∑n
j=1 Xj(0)/n for all −τ ≤ r ≤ 0,

and the time evolution tj = 0.

2. Parallel computation for each cell: if tMX−tmx ≤ τ , proceed with the parallel computation

for each cell, i.e., j = 1, ..., n. Otherwise, choose only the mx-th cell, i.e., j = mx to proceed

with the following computation, where MX and mx are the cells with the maximal and

the minimal current evolution times among {t1, ..., tn} respectively.

(a) Mean field variables: compute 〈X(tj − τ)〉 =
∑n

j=1 Xj(tj − τ)/n, where Xj(tj − τ)

is the latest value of Xj at tj − τ . That is, if tj − τ > 0, then Xj(tj − τ) = Xj(tj1)

for two consecutive updating times tj1 and tj2 of the jth cell with tj1 ≤ t − τ < tj2;

otherwise Xj(tj − τ) = Xj(0).

(b) Propensities: compute wi(Xj(tj)) for i = 1, ..., n0 according to the state Xj(tj) and

〈X(tj − τ)〉.

(c) Uniform random numbers: draw two uniform random numbers rj
1 and rj

2 ∈ [0, 1).

(d) Time interval ∆τ j : compute ∆τ j = −(lnrj
1)/

∑n0
i=1 wi until the next reaction.

(e) Next reaction µj : find the next reaction µj by taking µj to be the integer satisfying

µj−1∑

i=1

wi < rj
2(

n0∑

i=1

wi) ≤
µj∑

i=1

wi. (B1)

(f) Update the time tj → tj + ∆τ j , and the state Xj → Xj + θµj according to the µjth

reaction.

3. Termination check: if min{t1, ..., tn} > tstop, then terminate the computation; otherwise,

go to step 2.
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The Gellespie algorithm is considered as the standard one for stochastic simulation of bio-

chemical systems. In particular, the algorithm entails the generation of an ensemble of sample

trajectories of the system with correct statistics for a set of biochemical reactions, which ensure

to asymptotically converge to the solution of the corresponding master equation. Clearly, the

algorithm requires to store the sampling time and state in the time interval [tj − τ, tj ] due to the

time delays.

APPENDIX C: HOPF BIFURCATION OF THE EVOLUTION EQUATIONS

We give general conditions for Hopf bifurcation, under which the system (4) with time delays

will converge to a nontrivial periodic solution.

Let (N̄ , M̄) be an equilibrium of eqn.(4). The number of the nonzero elements in the covariance

vector M is p. Denote functions Fi(N(t), M(t)), Gij(N(t),M(t))−(dii+djj)Mij(t), and dij(Ni(t−
τi)+Nj(t)) by a m× 1 vector function F (N(t),M(t)), a p× 1 vector function G(N(t),M(t)) and

a p× 1 vector function U(N(t− τ), N(t)), respectively. Define

A(λ) =




∂F
∂N + P ∂F

∂M

∂G
∂N + Q ∂G

∂M


 , (C1)

where P = diag(d11(e−λτ1 − 1), · · · , dmm(e−λτm − 1)) is a m × m diagonal matrix. Q =

e−λt(UN1 , · · · , UNm) is a p × m matrix, where UNi denotes the p × 1 vector function U(N(t −
τ), N(t)), in which Nj(t−τj) and Nj(t) for j = 1, ...,m are replaced by zeros if j 6= i, and replaced

by eλ(t−τi) and eλt if j = i, respectively. Then the characteristic equation of eqn.(4) evaluated at

the equilibrium (N̄ , M̄) is

det(λI −A(λ)) = 0, (C2)

where I is the (m + p)× (m + p) identity matrix. Notice that A also includes the noise deviation

σ due to G. For any parameter α in eqn.(4), such as coupling coefficients, time delays or noise

deviations, we have the following theorem:

Theorem C.1 Suppose that functions F , G and U , are sufficiently smoothly depending on the

parameter α, and there is α0 such that for α < α0 all roots λk, k = 1, 2, · · · ,m + p, of the

characteristic equation belong to the open left halfplane, whereas for α = α0,

1. λ1,2|α=α0 = ±iω0, ω0 > 0;

2. dReλ1,2(α)
dα |α=α0 > 0, Reλj |α=α0 < 0 (j > 2),
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then a periodic solution of system (4) arises near the solution (N,M) = (N̄ , M̄) and this solution

is stable if it arises for α > α0 and unstable in the opposite case.

Under these conditions, if α increases and passes through the value α0, then the stable equilib-

rium becomes unstable, i.e., α = α0 is a critical value of the bifurcation. When α passes through

α0 in one of two directions, a periodic solution bifurcates from the equilibrium. Such a solution

is stable if it arises for α > α0 and unstable in the opposite case.

APPENDIX D: A SUFFICIENT CONDITION FOR SYNCHRONIZATION

When the number of cells, n is sufficiently large, we assume that the system can be expressed by

a deterministic eqn.(4) by the Gaussian approximation. To directly consider the interconnection

of cells, we replace Ni(t − τ) of eqn.(4) by
∑n

k=1 Nk
i (t − τ)/n due to y of eqn.(2). For such a

case, the existence of periodic solutions in the system (4) implies that the original n cells show

bulk synchronization. However, partial oscillations among cells are generally expected. For the

consideration of generality, we divide the n cells into n̄ (n̄ ≤ n) different sets or groups, each set

or group containing a fraction Wk, k = 1, 2, · · · , n̄, of n oscillators with

n̄∑

k=1

W k = 1 (D1)

where W k is a non-negative scalar and W kn is an integer representing the number of cells in the k-

th group. Since all the cells in each set are equivalent, we further use Ri(t−τ) ≡ ∑n
k=1 W kNk

i (t−
τ) to replace

∑n
k=1 Nk

i (t− τ)/n. Thus, eqn.(4) is rewritten by the following system:




dNk
i (t)
dt = Fi(Nk(t),Mk(t)) + dii(Ri(t− τ)−Nk

i (t))
dMk

ij(t)

dt = Gij(Nk(t),Mk(t))− (dii + djj)Mk
ij(t) + dij(Ri(t− τ) + Nk

j (t)),
(D2)

where 1 ≤ k ≤ n̄, dij = 0 if i 6= j, Mk
ij(t) = Mk

ji(t). Note that bulk oscillation or in-phase

synchronization of these n̄ groups correspond to n̄ = 1. This implies that the bulk oscillation is a

special case of solutions of eqn.(D2). However, phase-locked oscillations among cells are generally

expected.

For clarity, (D2) is rewritten as




dNk
i (t)
dt = Fi(Nk(t),Mk(t)) + dii(Ri(t− τ)−Nk

i (t))
dMk

ii(t)
dt = Gii(Nk(t), Mk(t))− 2diiM

k
ii(t) + 2dii(−Mk

ii(t) + Nk
i (t)) + dii[Ri(t− τ)−Nk

i (t)]
dMk

ij(t)

dt = Gij(Nk(t),Mk(t))− (dii + djj)Mk
ij(t), i 6= j.

(D3)
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By introducing a vector-valued variable Z labelling variables N and M , (D3) is further rewritten

as the following compacted form:

d

dt




zk
1 (t)

zk
2 (t)

zk
3 (t)


 = H(Zk(t); µ) +




D
∑n̄

k=1 W kzk
1 (t− τ)−Dzk

1 (t)

D
∑n̄

k=1 W kzk
1 (t− τ)−Dzk

1 (t)

O


 , (D4)

where D =




d11 0 0

0
. . . 0

0 0 dmm


, Zk(t) =




zk
1 (t)

zk
2 (t)

zk
3 (t)


 with zk

1 (t) ∈ Rm, zk
2 (t) ∈ Rm and zk

3 (t) ∈

Rm(m−1)/2, and µ is a parameter (see below).

Eqn.(D4) may be regarded as a system of n̄ identical groups coupled in a linear way with the

time delays. Each group will be considered as a system with m(m + 3)/2 distinct deterministic

variables, which are governed by the dynamical equation in the following vector form:

dZ

dt
= H(Z; µ). (D5)

Suppose that its steady state satisfies H(Z̄; µ) = 0. Then, a steady state of the coupled system

(D4) is

Ū =
(
Z̄; Z̄; · · · ; Z̄

)
. (D6)

We now study synchronization solutions of Eqn.(D4), i.e., phase-locked solutions with the

nonzero phase difference. The mathematical analysis of mutual synchronization is a challenging

problem. The pioneering work in this area is due to Winfree (1967, 1980, 1987), who simplified

the problem by assuming that the oscillators are strongly attracted to their limit cycles, so that

the amplitude variations can be neglected and only phase variations are needed to be considered.

Winfree discovered that mutual synchronization is a cooperative phenomenon, by a temporal

analogue of the phase transitions encountered in statistical physics.

Now, suppose that the system (D4) has a periodic solution of the form

Zj(t) = P (t− αjT ) =




P1(t− αjT )

P2(t− αjT )

P3(t− αjT )


 , 1 ≤ j ≤ n̄, (D7)

where P (t) is a nontrivial vector-valued function with the least period T > 0, and α1 = 0. Such

a solution is called a phase-locked solution of Eqn.(D4). Essentially, the oscillation in each cell is

described by functions P (t). Other cells, however, may be out of phase with the phase difference,

Tβj ≡ T (αj+1 − αj). Here and henceforth we shall index the cells by j mod n̄.
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When eqn.(D7) is a solution of eqn.(D4), certain compatibility conditions must hold. To derive

those conditions, consider the behavior of the jth and the (j+1)th variables at times t and t+βjT ,

respectively. From eqns.(D7) and (D4), for 2 ≤ j ≤ n̄,

dP1(t− αjT )
dt

= D

[
n̄∑

k=1

W kP1(t− τ − (αk + αj)T )− P1(t− αjT )

]
+ H(P (t− αjT ); µ)

and

dP1(t− αjT )
dt

= D

[
n̄∑

k=1

W kP1(t− τ − αkT )− P1(t− αjT )

]
+ H(P (t− αjT ); µ).

Subtracting the two equations, we have

D
n̄∑

l=1

W l [P1(t− τ − (αl + αj)T )− P1(t− αlT )] = 0. (D8)

Let

P1(t) =
∞∑

k=−∞
γke

2πikt/T (D9)

be the Fourier expansion of P1(t), where i =
√−1. Then γk = γ̄k, and γk = 1

T

∫ T
0 P1(t)e−2πikt/T dt.

Substituting eqn.(D9) into eqn.(D8) and using orthogonality, we find that basic compatibility

conditions are

det

[(
D

n̄∑

l=1

W le−2πikαl

)(
e−2πikαj − 1

)]
= 0 (D10)

for all k for which γk 6= 0 and 2 ≤ j ≤ n̄, where det[·] means the determinant.

Note that eqn.(D10) has the following trivial solution for all D and arbitrary W k:

αj = 0, 1 ≤ j ≤ n̄,

which corresponds to the in-phase solution of eqn.(D4). We are more interested in nontrivial

solution cases. For this, Assume

det(D) =
n̄∏

l=1

dll 6= 0. (D11)

Then,

n̄∑

l=1

W le−2πikαl = 0. (D12)
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One solution of (D12) is

αj =
j − 1

n̄
, 1 ≤ j ≤ n̄, (D13)

when

W j =
1
n̄

, 1 ≤ j ≤ n̄. (D14)

Clearly, the solution corresponding to such a phase has the uniform phase difference.

An interesting phenomenon is in the case that n identical cells are coupled in a ring in which

each cell is connected to its nearest neighbors as depicted in (Alexander and Auchmuty, 1986).

In such a case, we have n̄ ≡ n.

Next, we give the existence conditions of such a periodic solution with period T for eqn.(D4),

which are used to describe synchronization mechanism through cell-cell communication. We show

that the conditions required are straightforward and are easy to verify for any particular example.

These conditions strongly depend on coupling, time delay, variances of the noises and the kinetics.

For the system (D4), consider a problem to find a phase-locked solution of the form (D7). By

eqns.(D7) and (D4), we see that

d

dt




P1(t)

P2(t)

P3(t)


 =




D
∑n̄

l=1 W lP1(t− τ − αlT )−DP1(t)

D
∑n̄

l=1 W lP1(t− τ − αlT )−DP1(t)

O


 + H(P (t); µ) (D15)

and the oscillation in the jth (2 ≤ j ≤ n̄) group is given by

Zj(t) = P (t− αjT ). (D16)

Thus, the existence of a synchronous solution of eqn.(D4) is converted to finding a periodic

solution of system (D15). By Global Hopf Bifurcation Theorem (Alexander and Auchmuty,

1986), we only need to examine some algebraic conditions. To be specific, let t′ = ω0t (where

ω0 = 2π/T ). Then, eqn.(D16) can be rewritten as

ω0
d

dt




P1(t′)

P2(t′)

P3(t′)


 =




D
∑n̄

l=1 W lP1(t′ − 2πτ/T − 2παl)−DP1(t′)

D
∑n̄

l=1 W lP1(t′ − 2πτ/T − 2παl)−DP1(t′)

O


 + H(P (t′); µ). (D17)

Considering the linearization equation of (D17) evaluated at Ū , we then have

ω0
d

dt




P1(t)

P2(t)

P3(t)


 =




D
∑n̄

l=1 W lP1(t− 2πτ/T − 2παl)−DP1(t)

D
∑n̄

l=1 W lP1(t− 2πτ/T − 2παl)−DP1(t)

O


 +A · P (t), (D18)
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where A = ∂P H(Ū); µ). Let

Bk(µ) =




D
(∑n̄

l=1 W le−2πik(τ/T+αl) − 1
)

O O

D
(∑n̄

l=1 W le−2πik(τ/T+αl) − 1
)

O O

O O O


 +A (D19)

for k = 0, ±1, ±2, · · · . In addition, because our main interest is in the effects of noises on

synchronization oscillation, we take a parameter µ = σ. Then, finally we reach the following

theorem to conclude the existence conditions of phase-locked solutions (Alexander and Auchmuty,

1986).

Theorem D.1 Suppose that function H is differentiable with respect to its arguments, and that

W k = 1/n̄ for 1 ≤ k ≤ n̄. If for some µ = µ0 and αj = (j − 1)/n̄ (mod 1), the following

conditions are satisfied:

1. B0(µ0) of eqn.(D19) is non-singular;

2. B1(µ0) of eqn.(D19) has a simple purely complex eigenvalue iω0 with the corresponding left

and right eigenvectors VL and VR respectively;

3. ikω0 is not an eigenvalue of Bk(µ0) for k ≥ 2;

4. <
(
VL

dA(µ0)
dµ VR

)
6= 0 where < is an operator taking the real part of a complex number,

then there is a global branch of 2π-periodic solutions of eqn.(D18) bifurcating from (Ū , µ0, ω0), or

equivalently, the original coupled system (D4) has a phase-locked solution with a uniform phase

difference.

If these conditions in Theorem D.1 are satisfied, then the system (D4) definitely has a syn-

chronous solution, and the corresponding synchronization mechanism is based on ”global Hopf

bifurcation”. Such conditions are easy to use and enable us to predict, for a given set of parameter

values, whether or not the intercell coupling and the noises synchronize the dynamical behaviors

of cells.




